Bayesian Inference for Sensitivity Analysis of Computer Simulators, With an Application to Radiative Transfer Models
نویسندگان
چکیده
Computer simulators are used in science and technology to model physical processes or the behavior of real-world systems. Sensitivity analysis provides a useful tool for quantifying the impact of uncertainty in the computer simulator inputs on the computed output. We focus on global sensitivity analysis, which quantifies output uncertainty as all the inputs vary continuously over the input space. The influence of each input and how uncertainty in the output is apportioned amongst the inputs are determined by calculating the main effects and sensitivity indices of the computer simulator inputs. Typically, these quantities are computed using Monte Carlo methods, which require a large number of computer simulator runs, making the calculations infeasible if the simulator is computationally expensive. Bayesian methods have been used to tackle sensitivity analysis of computationally expensive simulators through building a statistical emulator for the computer simulator output, typically, based on a Gaussian process prior for the simulator output function. In this work, we develop an approach for integrating global sensitivity analysis tools and extending semi-Bayesian approaches to a fully Bayesian methodology. The approach is utilized to carry out sensitivity analysis of the Leaf-Canopy Model, a radiative transfer model that simulates the interaction of sunlight with vegetation.
منابع مشابه
Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors
Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملA One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method
In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Technometrics
دوره 56 شماره
صفحات -
تاریخ انتشار 2014